
1
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

Chapter seven

Software engineering

Software Security Engineering

Security Life-cycle model:

 The Microsoft Security Development Lifecycle (SDL) is an industryleading software

security process. A Microsoft-wide initiative and a mandatory policy since 2004, the SDL

enabled Microsoft to embed security and privacy in its software and culture. The SDL

introduces security and privacy early and throughout all phases of the development process

and is without question the most widely known and used security development life-cycle

model.

 Microsoft defined a collection of principles it calls Secure by Design, Secure by Default,

Secure in Deployment, and Communications (SD3+C) to help determine where security

efforts are needed. These are as follows:

Secure by Design

 Secure architecture, design, and structure: Developers consider security issues part of the

basic architectural design of software development. They review detailed designs for

possible security issues, and they design and develop mitigations for all threats.

 Threat modeling and mitigation: Threat models are created, and threat mitigations are

present in all design and functional specifications.

 Elimination of vulnerabilities: No known security vulnerabilities that would present a

significant risk to the anticipated use of the software remain in the code after review. This

review includes the use of analysis and testing tools to eliminate classes of vulnerabilities.

 Improvements in security: Less secure legacy protocols and code are deprecated, and,

where possible, users are provided with secure alternatives that are consistent with industry

standards.

2
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

Secure by Default

 Least privilege: All components run with the fewest possible permissions.

 Defense in depth: Components do not rely on a single threat mitigation solution that leaves

users exposed if it fails.

 Conservative default settings: The development team is aware of the attack surface for the

product and minimizes it in the default configuration.

 Avoidance of risky default changes: Applications do not make any default changes to the

operating system or security settings that reduce security for the host computer. In some

cases, such as for security products, it is acceptable for a software program to strengthen

(increase) security settings for the host computer. The most common violations of this

principle are games that either open firewall ports without informing the user or instruct

users to open firewall ports without informing users of possible risks.

 Less commonly used services off by default: If fewer than 80 percent of a program’s users

use a feature, that feature should not be activated by default. Measuring 80 percent usage

in a product is often difficult because programs are designed for many different personas.

It can be useful to consider whether a feature addresses a core/primary use scenario for all

personas. If it does, the feature is sometimes referred to as a P1 feature.

Secure in Deployment

• Deployment guides: Prescriptive deployment guides outline how to deploy each feature of

a program securely, including providing users with information that enables them to assess

the security risk of activating non-default options (and thereby increasing the attack

surface).

• Analysis and management tools: Security analysis and management tools enable

administrators to determine and configure the optimal security level for a software release.

• Patch deployment tools: Deployment tools aid in patch deployment.

3
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

Communications

• Security response: Development teams respond promptly to reports of security

vulnerabilities and communicate information about security updates.

• Community engagement: Development teams proactively engage with users to answer

questions about security vulnerabilities, security updates, or changes in the security

landscape.

The secure software development process model looks like the one shown in Figure 18.1.

The Microsoft SDL documentation describes what architects, designers, developers, and testers

are required to do for each of the 16 recommended practices. The data that Microsoft collected

after implementing the SDL shows a significant reduction in vulnerabilities, which led to a need

for fewer patches, and thus a significant cost savings. We recommend that you browse the SDL

website to learn more about these practices. Since the SDL was developed, there have been

numerous papers, books, training, and so on, to go with the SDL model.

Security Requirements Engineering

Although security requirements are an important part of secure software development, in practice

they are often neglected. When they exist, they are often an addon, copied from a generic list of

security features. The requirements engineering that is needed to get a better set of security

requirements seldom takes place.

Requirements engineering practice typically addresses desired user features. Therefore, attention

is given to the functionality of the system from the user’s perspective, but little attention is given

4
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

to what the system should not do. Users expect systems to be secure, and these assumptions need

to make their way into security requirements for software systems before they are developed, not

after the fact. Often the users’ assumptions about security are overlooked because system features

are the primary focus.

In addition to security life-cycle models, there are many process models that are specific to security

requirements. These include: core security requirements artifacts, Software Cost Reduction (SCR),

SQUARE (Security QUAlity Requirements Engineering), and Security Requirements Engineering

Process (SREP). For the remainder of this section, we’ll consider SQUARE as a representative

example of security life-cycle models.

SQUARE

(1) It is a representative security requirement engineering process model, but it’s important to keep

in mind that if you already have a development process model, you can just pick up some of the

SQUARE steps to enhance your existing model. There’s no need to develop a whole new process

to address security in your software development activities.

(2) The SQUARE process model provides for eliciting, categorizing, and prioritizing security

requirements for software-intensive systems. Its focus is to build security concepts into the early

stages of the development life cycle. It can also be used for fielded systems and those undergoing

improvements and modifications.

The SQUARE process

Let’s take a look at the steps.

Step 1. Agree on definitions. So that there is not semantic confusion, this step is needed as a

prerequisite to security requirements engineering. On a given project, team members tend to have

definitions in mind, based on their prior experience, but those definitions are often different from

one another. Sources such as the Institute for Electrical and Electronics Engineers (IEEE) and the

Software Engineering Body of Knowledge (SWEBOK) provide a range of definitions to select

from or tailor.

Step 2. Identify assets and security goals. This step occurs at the project’s organizational level and

is needed to support software development. Different stakeholders usually have concerns about

5
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

different assets, and thus have different goals. For example, a stakeholder in human resources may

be concerned about maintaining the confidentiality of personnel records, whereas a stakeholder in

a research area may be concerned with ensuring that research project information is not accessed,

modified, or stolen.

Step 3. Develop artifacts. This step is necessary to support all subsequent security requirements

engineering activities. Often, organizations do not have key documents needed to support

requirements definition, or they may not be up to date. This means that a lot of time may be spent

backtracking to try to obtain documents, or the team will have to bring them up to date before

going further.

Step 4. Perform risk assessment. This step requires an expert in risk assessment methods, the

support of the stakeholders, and the support of a security requirements engineer. There are a

number of risk assessment methods, but regardless of the one that you choose, the outcomes of

risk assessment can help in identifying the high-priority security exposures.

Step 5. Select elicitation technique. This step becomes important when there are diverse

stakeholders. A more formal elicitation technique, such as the Accelerated Requirements Method,

Joint Application Design, or structured interviews, can be effective in overcoming communication

issues when there are stakeholders with different cultural backgrounds. In other cases, elicitation

may simply consist of sitting down with a primary stakeholder to try to understand that

stakeholder’s security requirements needs.

Step 6. Elicit security requirements. This step encompasses the actual elicitation process using the

selected technique. Most elicitation techniques provide detailed guidance on how to perform

elicitation. This builds on the artifacts that were developed in earlier steps.

Step 7. Categorize requirements. This step allows the security requirements engineer to distinguish

among essential requirements, goals (desired requirements), and architectural constraints that may

be present. This categorization also helps in the prioritization activity that follows.

Step 8. Prioritize requirements. This step depends on the prior step and may also involve

performing a cost-benefit analysis to determine which security requirements have a high payoff

relative to their cost. Of course prioritization may also depend on other consequences of security

breaches, such as loss of life, loss of reputation, and loss of consumer confidence.

6
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

Step 9. Requirements inspection. This review activity can be accomplished at varying levels of

formality. Once inspection is complete, the project team should have an initial set of prioritized

security requirements that can be revisited as needed later in the project.

security risk Analysis

A wide variety of security risk assessment methods have been proposed. Typical examples include

SEI CERT’s Security Engineering Risk Analysis (SERA) method and the NIST Risk Management

Framework (RMF). RMF has emerged as an approach that is widely used, providing guidelines

for the users. The RMF steps for security are:

∙ Categorize the information system and the information processed, stored, and transmitted by that

system based on an impact analysis.

∙ Select an initial set of baseline security controls for the information system based on the security

categorization; using an organizational assessment of risk and local conditions, tailor and

supplement the security control baseline as needed.

∙ Implement the security controls, and describe how the controls are employed within the

information system and its operational environment.

∙ Assess the security controls using appropriate assessment procedures to determine the extent to

which the controls are implemented correctly, operating as intended, and producing the desired

outcome with respect to meeting the security requirements for the system.

. Authorize the information system operation based on a determination of the risk to organizational

operations and assets, individuals, or other organizations (including national defense), from the

operation of the information system that this risk is acceptable.

∙ Monitor the security controls in the information system on an ongoing basis including assessing

control effectiveness, documenting changes to the system or its environment of operation,

conducting security impact analyses of the associated changes, and reporting the security state of

the system to designated organizational officials.

